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Abstract

The stability of buoyancy driven shear ~ows in inclined long cavities with end wall temperature di}erence is investigated
for di}erent inclinations and a wide range of Prandtl number[ The results of the linear stability analysis show that the
basic unicellular motion may break down due to stationary or oscillatory instabilities[ The stationary rolls are nearly
square and the mechanism of this instability is mainly hydrodynamic[ The oscillatory instability is driven by buoyancy
and consists of long!wave rolls of about 09 times the width of the cavity[ For Pr ³ 9[1 stationary modes are the most
unstable while for Pr × 9[6 oscillatory modes are preferred[ At moderate Prandtl numbers "9[1 ³ Pr ³ 9[6# the most
unstable perturbation is determined by the angle of inclination[ A better understanding of the instability mechanisms is
provided by an energy analysis of the marginally stable perturbations[

Results from direct numerical simulations of the full non!linear unsteady equations in closed con_gurations are also
presented[ Both stationary and oscillatory instabilities have been obtained and their characteristic features "wave number
and frequency# are consistent with the linear theoretical predictions[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

c phase velocity of critical perturbations
g gravity vector
h half width of the cavity
k real wave number
L length of the cavity
N number of basis functions
p dimensionless pressure
Pr Prandtl number
R Rayleigh number
T dimensionless temperature
v velocity vector
u\ w velocities in the x and z direction respectively
wmax"z# is the maximum upslope velocity along x at the
core region
x\ z coordinates[

Greek symbols
a inclination angle
b thermal expansion coe.cient

� Corresponding author[

DT temperature di}erence between end walls
o � 1h:L aspect ratio
k thermal di}usivity
l complex growth rate of perturbations
n kinematic viscosity
h dimensionless temperature gradient along z in the
core region
C perturbation streamfunction
U perturbation temperature
8\ u amplitudes of the stream function and temperature
perturbations
v angular frequency[

Subscripts
c critical value
o basic state
os oscillatory
st stationary[

0[ Introduction

Natural convection in shallow cavities driven by an
end!to!end temperature di}erence have received an



R[ Del`ado!Buscalioni\ E[ Crespo del Arco : Int[ J[ Heat Mass Transfer 31 "0888# 1700Ð17111701

increasing attention since the last decade due to its rel!
evance in several technological and fundamental areas[
Most part of the published works on this subject consider
cavities placed horizontally ð0Ł[ Convection in long
inclined cavities driven by a temperature gradient along
their longest axis is also important for a variety of
phenomena that occur in industry and in nature[ For
instance\ in crystal growth from vapor phase\ larger
transport rates are obtained by tilting the ampoule a
certain angle with respect to gravity ð1\ 2Ł[ Natural con!
vection in tilted ~uid layers is also found in many geo!
physical situations where the ~uid is enclosed in long
narrow slots arbitrarily inclined to gravity ð3\ 4Ł[ An
interesting application is the transport and rate of spread
of passive contaminants " for instance\ radioactive
material# in long tilted liquid!_lled rock fractures[ Woods
and Lintz ð3Ł studied this problem and concluded that
the contribution of the base ~ow to the transport rate is
larger than that of di}usion[ Though they did not con!
sider the secondary ~ow\ they assess its importance in
modifying the overall mass ~ux[ In this paper we inves!
tigate the basic and secondary ~ow in an inclined cavity
as indicated in the geometry of the problem shown in
Fig[ 0[

Two particular limit cases of the geometry of Fig[ 0
correspond to vertical cavities heated from below\ a � 9>\
and horizontal cavities with lateral heating\ a � 89>[ For
a � 9>\ the basic state is purely conductive "rest solution#[
Stability analysis of the rest solution was studied by Ger!
shuni and Zhukhovitskii ð5Ł^ the critical Rayleigh number
corresponds to odd perturbations with in_nite wave!
length[ In the horizontal case\ a � 89>\ a basic circulation
arises for any small non!zero temperature gradient[ This
case was _rst comprehensively studied in the series of
papers by Cormack et al[ ð6Ł and Imberger ð7Ł and\ since
then\ it has been extensively revised "see Ref[ ð0Ł#[ The
linear stability analysis of the parallel ~ow solution for
a � 89>\ was _rst carried out by Hart ð8Ł and revised by
Laure and Roux ð09Ł and Kuo and Korpela ð00Ł[ These
works considered the marginal stability of longitudinal

Fig[ 0[ Geometry of the problem and structure of the basic ~ow[
Solid line represents the basic velocity pro_le and dashed line
the temperature pro_le[

"three!dimensional# and transversal "two!dimensional#
perturbations in low Pr ~uids[ Janssen and Henkes ð01Ł
studied numerically the steady and time!dependent two!
dimensional ~ow in a horizontal square cavity and also
the e}ect of a third direction "depth# on the instabilities
ð02Ł[ They showed that for depth!to!width ratio
D:1h − 9[1\ the steady ~ow is in good approximation
two!dimensional in the central region of the three!dimen!
sional cavity[ For D:1h − 0 they observed a wave!like
stationary modulation along the depth superposed to the
two!dimensional ~ow[ For D:1h � 9[4 this longitudinal
instability was not found and in this case\ the observed
critical instability was two!dimensional[

In the inclined cavity of Fig[ 0\ the basic ~ow arises
for any temperature di}erence and its intensity increases
steeply with the Rayleigh number as long as the isotherms
are distorted by advection[ The type of ~ow that arises is
similar to that described by Woods and Lintz ð3Ł in
inclined liquid!_lled rock fractures with vertical thermal
gradient[ In particular\ the shape of our ~ow coincides to
that described in Ref[ ð3Ł in their limit of vanishing ratio
between rock and liquid thermal conductivities[ Adachi
and Mizushima ð03Ł studied the stability of thermal con!
vection in a similar inclined geometry in a square two!
dimensional cavity[ Bontoux et al[ ð2Ł considered the
steady ~ow in long inclined axially heated cylinders and
showed that for large enough Rayleigh number\ the struc!
ture of the three dimensional ~ow is very similar to the
~ow observed in vertical cylinders after the onset of con!
vection ð04Ł[

Although the e}ect of inclined boundaries on the ~ow
stability has been treated in a variety of geometries "see
Ref[ ð5Ł for a classical review#\ as far as we know\ there
are no published works considering the stability of the
base ~ow in long inclined cavities with axial temperature
gradient[ Among the studies which considered inclined
walls\ the natural convection between di}erentially
heated inclined plates ð05Ł\ is an interesting example of
how the inclination determines the interplay between con!
vective and hydrodynamical instability mechanism[

This paper considers the stability of thermally driven
shear ~ows in axially heated inclined long cavities[ The
breakdown of the unicellular ~ow may be due to station!
ary or oscillatory instabilities depending mostly on the
Prandtl number and also on the inclination angle[ In
Section 1\ we obtain and discuss the basic ~ow solution
in closed cavities[ The stability analysis of the basic ~ow
to perturbations periodic in the axial direction is con!
sidered in Section 2[ In Section 3 the energy balance for
the marginally stable solutions is presented[ The results
are reported in Section 4\ and discussed in Section 5
where the stability boundaries in the parameter space
"Pr\ a# are also presented[ Numerical solutions of the
nonlinear ~ow in Section 6\ assess the stability results and
provide information on the ~ow at supercritical Rayleigh
number[ Some concluding remarks are given in Section
7[
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1[ Governing equations and basic ~ow

Let us consider the ~ow in the two dimensional cavity
of Fig[ 0[ The cavity is _lled with an incompressible ~uid
and inclined a degrees with respect to gravity[ Owing to
the existence of a temperature di}erence between the end
walls a convective motion is established[ The equations
governing the motion are the Navier!Stokes and heat
transport equations with the Boussinesq approximation[
By using\ h1:n\ h\ n: h\ DT h:L as scales for time\ length\
velocity and temperature respectively\ the dimensionless
equations are]

9 = v� 9\

1v:1t¦"v =9#v � −9p¦Dv−RPr−0Te`[ "0#

1T:1t¦"v = 9#T � Pr−0DT\ "1#

where e` � sin ai¼−cos ak¼ \ is the gravity versor[ The Ray!
leigh number and Prandtl number are de_ned respectively
as R � `bDTh3:nkL and Pr � n:k[

The non!slip condition is used at all rigid boundaries\
and the temperature in the walls x � 20 satis_es the
homogenous heat!conduction equation]

v � 9 at all boundaries "2#

1T
1x

� 9 at x �20 "3#

As discussed in previous works Refs[ ð5 and 6Ł in the limit
of vanishing o\ a simple exact parallel!~ow solution exists
in the core region\ away from square turning region near
the end walls[ At the core\ the velocity\ vo � uoi¼¦wok¼

satis_es uo � 9\ wo � wo"x# and the temperature _eld is\
To"x\ z# � −hz¦b¦uo"x#[

Substituting these solutions into equations "0# and "1#\
and eliminating p by cross di}erentiation\ the following
system of ordinary di}erential equations for wo"x# and
uo"x# is obtained]

w1o "x#¦Pr−0R cos au?o"x# � hPr−0R sin a\ "4#

hwo"x#¦Pr−0uýo"x# � 9[ "5#

with

wo"20# � u?o"20# � 9[ "6#

Hereafter the primes denote di}erentiation with respect
to x[

The solution of equations "4#Ð"6# is

wo"x# �
r tana

Pr 0
sin r sinh rx−sinh r sin rx

d"r# 1\ "7#

uo"x# � −h
tana

r 0
sin r sinh rx¦sinh r sin rx

d"r#
−rx1\ "8#

where d"r# is

d"r# � sinh r cos r¦cosh r sin r\ "09#

and

r 0"hR cos a#0:3[ "00#

For _xed a and Pr the amplitude of the basic ~ow is
controlled by the group parameter hR cos a[ The parallel
~ow solution describes a natural counter~ow heat
exchanger[ The cooler current occupies the region x × 9
and it is heated as it moves downwards in the z−axis[ In
the interval 9 ³ r3 ³ R�\ "R� � 20[173#\ an increase of r
raises the amplitude of the basic core ~ow solutions and
both wo and uo become in_nity as r3 : R�[ For r3 above
R� there is an inversion of the basic solutions and a new
node appears[ This fact occurs at each root of d"r# whose
values\ r ¼"n−0:3#p\ n � 0\1\ [ [ [ coincide with the
fourth root of the critical Rayleigh number for the insta!
bility of even modes in the case of a � 9> ð5Ł[

The divergence of the basic pro_les at certain values
of r has been reported in other con_gurations which
considered in_nitely long cavities "o � 9# ð3Ł\ ð5Ł[ We have
found that in closed cavities "even in the limit o : 9#\
r3 ³ R� for any R thus\ the basic ~ow does not diverge[
This is illustrated in Fig[ 1 where numerical "see section
6# and theoretical calculations of the local Rayleigh num!
ber at the core hR are plotted vs R[ The theoretical cal!
culation of h "in terms of R\ a and o# has been done by
using the integral method proposed by Bejan and Tien
ð06Ł[ At low R\ the axial temperature gradient is constant
along the cavity "h ¹ 0# and the ~ow is mainly driven by
the cross!stream buoyancy\ proportional to hR sin a[ This
situation corresponds to a core driven regime ð6\ 7Ł[ As
R increases\ the cross!stream temperature gradient cre!
ated by the counter~ow advection becomes larger and
acts as another source of motion ðrelated to the term

Fig[ 1[ The local Rayleigh at the core "hR# vs external Rayleigh
number "R# for several inclinations and aspect ratios[ Solid lines
correspond to the theoretical solution and circles are results
from the numerical solution in the closed geometry "see section
6# using Pr � 9[6 "white circles# and Pr � 5[6 "black circles#[
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R cos au?o in equation "4#Ł[ This coupling of the velocity
and temperature x!gradient induces a steep increase of
the mean ~ow intensity as hR approaches R�: cos a and
leads to a boundary layer regime in which the tem!
perature drop concentrates near the end regions "h ³ 0#[
As R further increases\ hR tends asymptotically to
R�: cos a "see Fig[ 1#[ This fact indicates that in inclined
cavities "as long as the ~ow is unicellular#\ the local Ray!
leigh number at the core will not exceed a limit value\
R�: cos a[

2[ Linear stability analysis

In this section we investigate the stability of the basic
~ow to in_nitesimal perturbations periodic in the axial
direction "z# and developed in the core of the cavity[

In the stability analysis of the core ~ow\ it is preferable
to use the local temperature z!gradient at the core\ hDT:L\
in the temperature scaling[ Hereafter "except in section
6\ where we present numerical results in the closed
geometry# the scale of temperature is "hDT:L#h[ By using
this scale\ 1To:1z � −0^ R corresponds to the local Ray!
leigh number at the core of the cavity and the basic
velocity and temperature _elds are those given in equa!
tions "7# and "8#\ with h � 0[

In order to study the stability of the basic ~ow we
proceed in the usual form[ The ~ow variables are written
as the sum of the mean ~ow quantity and a small per!
turbation[ The stream function of the perturbation ~ow
satis_es

u �
1C
1z

\ w � −
1C
1x

[

We ascribe to the stream function and temperature per!
turbations\ U\ a dependence on z\ t of the form

"C\ U# � "8"x#\ u"x## exp"lt¦ikz#

Substitution of C and U into the curl of equations "0#
and "1# and neglecting products of perturbation quan!
tities leads to the following system of di}erential equa!
tions for the amplitudes\ 8 and u]

lD8 � D18−ik"woD8−wýo8#

−R Pr−0"ik sin au¦cos au?# "01#

lu � Pr−0Du−ik"u?o8¦wou#−8? "02#

with the boundary conditions

8"20# � 8?"200# � u?"20# � 9 "03#

where

D 0
d1

dx1
−k1

Equations "01#Ð"03# have nontrivial solutions only for
certain values of l "eigenvalues#[ The boundary!value
problem is not self!adjoint so the eigenvalues l are in

general complex\ l � lr¦ili[ The real part lr is the rate
of damping or ampli_cation of the perturbations and the
imaginary part li is the frequency of the oscillations[ The
results of the stability problem are presented in section
4[ The physical interpretation of these results "in section
5# will be performed by considering the energy balance
of the perturbations\ introduced in the next section[

3[ Energy analysis

Physical understanding of the instability mechanisms
may be gained by considering the energy balances of
equations "01# and "02#[ By multiplying equation "01# by
the complex conjugate of 8\ 8�^ multiplying equation
"02# by u�^ integrating from x � −0 to x � 0 and taking
the real part of the resulting equations\ the following
relationships are obtained]

lrEm � Dm¦M¦Bx¦Bz\ "04#

lrEt � Dt¦Tx¦Tz\ "05#

where

Em � ð=u½ =1¦=w½ =1Ł

Dm � −ð=u½?=1¦=w½ ?=1¦k1"=u½ =1¦=w½ =1#Ł
M � −ðw?ou½w½ �Ł

Bx � −R Pr−0 sin aðu½u�Ł

Bz � R Pr−0 cos aðw½ u�Ł

Et � ð=u=1Ł

Dt � −Pr−0ð=u?=1¦k1 =u=1Ł
Tx � −ðu?ou½u�Ł
Tz � ðw½ u�Ł[

Brackets stand for the real part of the average in the x
direction\ i[e[\ ð f Ł � Re"Ð0

−0 f"x# dx#\ and

u½ "x# � ik8"x#\

w½ "x# � −8?"x#\

are the amplitudes of the cross!stream and axial per!
turbation velocities[

In equation "04#\ lrEm represents the rate of change of
perturbation kinetic energy^ Dm the rate of kinetic energy
dissipation by viscous forces and M the rate of kinetic
energy transfer from the mean ~ow to the disturbance
by momentum advection "energy related to the Reynold
stress#[ The rate at which work is done by buoyancy
along x and z axis are respectively\ Bx and Bz[ Equation
"05# represents the balance for the temperature variance
"00#[ lr Et is the net rate of change of this quantity\ Dt its
rate of dissipation by thermal di}usion and Tx\ Tz are
respectively the advective production of temperature
variance due to disturbance motions along x and z direc!
tions[

Note that in equation "04# negative terms\ as di}usion
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"Dm\ Dt ³ 9# involve a loss of disturbance energy and are
thus related to stabilizing e}ects while\ positive terms
are related to destabilizing mechanisms[ It is possible to
anticipate the sign of some kinetic energy terms by physi!
cal reasoning[ As the ~uid is being heated from below\
the axial projection of buoyancy tends to amplify any
disturbance motion along z−axis so\ Bz × 9[ On the
other hand\ for any a × 9>\ the mean temperature _eld
has a stable strati_cation along x "the colder ~uid is
placed below# so\ Bx ³ 9[ Finally\ note in Fig[ 0 that the
basic velocity pro_le has an in~ection point at x � 9[ Due
to the occurrence of this in~ection point\ shear instability
modes with M × 9 are also expected to appear[

The analysis of the energy contribution of the terms in
equations "04# and "05# is simpli_ed by scaling the energy
terms with the magnitude of momentum di}usion\ =Dm=
and temperature di}usion =Dt=\ respectively[ For neutral
perturbations\ lr � 9\ this leads to\

0 � m¦bx¦bz[ "06#

0 � tx¦tz\ "07#

where m 0 M:=Dm=\ bi 0 Bi:=Dm= and ti 0 Ti:=Dt=\ with
i � "x\ z#[

4[ Results

We have solved the characteristic boundary!value
problem of equations "01#Ð"03# by using a TauÐCheby!
shev method[ The characteristic system of di}erential
equations is reduced to a complex matrix generalized
eigenvalue problem\ i[e[ "A−lB#j � 9[ The calculations
of eigenvalues and eigenvectors were performed using the
subroutine EIGZC of the standard IMSL library[ The
same number of Chebyshev polynomials\ N\ were used
in the stream function and temperature expansions[

The stability of the basic ~ow in vertical\ a � 9> and
horizontal a � 89> cavities has been used to validate our
results[ The calculated values of the critical Rayleigh
number and wave number for the onset of convection in
vertical cavities\ R� � 20[17 and kc � 9\ coincide with the
analytical result of Gershuni and Zhukhovitskii ð5Ł[ Both
are independent of Pr as a consequence of the thermal
origin of the instability[ Our results for the onset of
multicellular ~ow in horizontal cavities have been com!
pared with those corresponding to the transversal shear
instability reported in Refs[ ð8Ð00Ł[ We obtain the results
of Refs[ ð09 and 00Ł "e[g[ for Pr � 9[94\ Rc � 660[86\
kc � 0[235\ while in Refs[ ð09 and 00Ł\ Rc � 660[84\
kc � 0[234#[ As Laure and Roux pointed out\ Hart|s ð8Ł
results "Rc � 529\ kc � 1[14 for Pr � 9[94# are less accu!
rate because of hardware limitations[

We present results of the stability of the basic ~ow in
inclined cavities in the range of 9>¾ a ¾ 89> for Pr ³ 9[0
and for a slightly limited range\ 9>¾ a ³ 73>\ for
9[0 ¾ Pr ¾ 09[ A typical marginal curve presents two

local minima which correspond to di}erent instability
branches[ In Fig[ 2\ the values of marginal Rayleigh num!
ber are shown vs k\ for Pr � 9[6\ a � 09>[

Two di}erent branches are observed] an oscillatory
branch which presents a local minima at low values of
the wave number and corresponds to rolls of approxi!
mately ten times the width of the cavity and a stationary
branch with a critical wavelength of nearly two times the
width of the cavity[ The local minima of the marginal
Rayleigh number vs k for the oscillatory and stationary
instabilities are respectively denoted by Rc\os and Rc\st and
the corresponding wave number kc\os and kc\st[ In the case
of the oscillatory instability and in the whole range of a

and Pr considered\ the critical parameters and eig!
enfunctions calculated with N � 04 di}ered in less than
0:093 with those obtained with larger values of N[ For
the stationary instability the number of trial functions N
needed to ensure the required accuracy increases with a

and Pr[ For the largest values of Pr and a considered\
N � 13 were required to obtain deviations less than 0:092[
For Pr × 9[1\ a × 73> and k × 0[9 the numerical method
does not converge very well and we do not present results
for this range[ Hart ð8Ł reported the same problem for
Pr × 9[0 and a � 89> in his numerical method "simple
Galerkin in the primitive variable formalism#[ Laure and
Roux ð09Ł and Kuo and Korpela ð00Ł used a TauÐCheby!
shev method on the primitive variables formalism but
they do not present results of the transversal instability
for Pr × 9[04 either[ Spurious eigenvalues "with no physi!
cal meaning# were found[ As Brenier et al[ ð08Ł pointed
out\ spurious eigenvalues are likely to be found when
using the TauÐChebyshev method on the stream function
and temperature formalism[ For N × 01\ these spurious
eigenvalues were easily avoided because they were in all
cases at least 091Ð092 times greater than the proper ones[

Fig[ 2[ Neutral stability curve for Pr � 9[6 and a � 09>[
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Table 0
Critical Rayleigh number\ wave number and phase velocity\ c � li:k\ for the oscillatory instability

Pr � 9[2 Pr � 9[6 Pr � 5[6

a Rc\os kc\os c Rc\os kc\os c Rc\os kc\os c

0 20[005 9[072 03[053 20[03 9[102 7[227 20[110 9[027 1[047
09 29[367 9[138 07[413 29[488 9[228 09[230 20[188 9[078 2[089
29 21[877 9[116 16[978 22[981 9[234 03[942 24[102 9[092 5[953
49 31[830 9[064 39[236 31[685 9[292 08[431 36[205 9[950 00[236
69 67[387 9[978 64[056 66[168 9[060 23[236 77[700 9[921 13[810
73 210[72 9[909 346[60 135[33 9[972 091[35 180[54 9[994 88[229

The stability analysis predicts that the oscillatory insta!
bility is critical for Pr ³ 9[1\ and the stationary instability
for Pr × 9[6[ For intermediate values of the Prandtl num!
ber the inclination angle a determines the type of sec!
ondary ~ow[

The dependence of Rc\os with a is depicted in Table 0[
For any Prandtl number\ Rc\os grows with the inclination
angle roughly like ½R�: cos a[ Rc\st has this same tend!
ency for Pr × 9[2 "see Fig[ 3a# but for lower Pr it deviates
from this trend and decreases with a for Pr ³ 9[94[ The
dependence of the critical Rayleigh number with Pr is
shown in Fig[ 4[ In the case of the oscillatory instability
the e}ect of Pr depends on the inclination angle] for
a ³ 29>\ Rc\os increase with Pr\ while for a × 29> there is
_rst\ a slight decrease of Rc\os from 9[2 ³ Pr ³ 9[6 and
then it rises for larger Pr[

The values of the critical wave number for the station!
ary instability are shown in Fig[ 3b[ For Pr ³ 9[94\ kc\st

is almost independent of the inclination angle "e[g[ for

Fig[ 3[ "a# Critical Rayleigh number "Rc\st# and\ "b# critical wave
number "kc\st# for the stationary instability[

Fig[ 4[ Axial projection of the critical Rayleigh number vs Pr
for several angles[ Solid lines correspond to oscillatory and
dashed lines to stationary instability[

Pr ³ 9[94\ kc\st ¹ 0[23\ within 1) of variation with a#^
for larger Prandtl number and a ³ 74>\ kc\st increase with
Pr and decrease for larger inclinations[ The dependence
of kc\os with a and Pr is shown in Fig[ 5a[ The maximum
values of kc\os are found at moderate angles "e[g[
kc\os � 9[24\ for a � 19> and Pr � 9[6#[ kc\os falls sharply
to zero as a : 9[ Concerning the dependence with Pr\ the
trend of kc\os with Pr reaches a maximum at Pr � 0 as
Fig[ 5b shows[

5[ Discussion

5[0[ Stationary shear instability

In this section we discuss the behaviour of per!
turbations with li � 9[ Their energy balance\ shown in
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Fig[ 5[ "a# Critical wave number of oscillatory instability "kc\os#
vs a and\ "b# vs the Prandtl number[

Fig[ 6a\ reveals that these are shear disturbances in the
sense that they obtain most of their kinetic energy from
the mean velocity _eld[

As a consequence of the mechanical origin of the insta!
bility\ Rc\st decreases with Pr and for Pr ³ 9[94 Rc\st varies
roughly like Pr "see Fig[ 4#[ The corresponding rolls\ kc\os

are approximately square but have a sizeable dependence
on Pr and a which is a consequence of the contribution
of the thermal _eld[ This contribution is essentially regu!
lated by the Prandtl number as the energy balance in Fig[
6a shows[

Fig[ 6[ The energy and temperature variance balances "terms in
equations 06 and 07# for "a# stationary and "b# oscillatory critical
disturbances[

For Pr ¾ 9[94 the kinetic energy released by buoyancy
is almost negligible " for instance\ bx � −9[911\
bz � 9[903\ m � 0[904\ for Pr � 9[90#[ In this range of
Pr\ kc\os is almost independent of the inclination
"kc\st ¼ 0[23# and the shape of the secondary ~ow is
mainly determined by hydrodynamic e}ects^ i[e[\ the
momentum advection and the momentum di}usion[ Fig[
7a shows contours of the perturbation stream function
and isotherms for a ~uid with Pr � 9[94[ The energy
transfer is primarily from the shear at the center of the
layer at x � 9\ where w?o maximum[

For Pr above 9[94 another destabilizing mechanism
related to the thermal _eld becomes increasingly im!
portant[ First\ there is a signi_cant rise in the percentage
of kinetic energy released by the buoyancy force along z
direction " for instance\ for a � 39>\ it grows from 7[4)
at Pr � 9[2 to 39[3) at Pr � 09#[ Also\ for Pr above
9[94\ the isotherms of the perturbations tend to be con!
centrated where the cross!stream advection "uu?o# is
maximum "note that in the balance of temperature vari!
ance\ tx × 9[80 for Pr × 9[1^ see Fig[ 6a#[ These two facts
indicate that the destabilizing contribution of buoyancy
is\ in this case\ a consequence of the interplay of the
velocity and temperature _elds[ Consider an up!drift with
u ³ 9 generated by shear interaction near x � 9[ As long
as u?o ³ 9\ this perturbation carries colder ~uid from posi!
tive x to the warmer region in x ³ 9[ If the cavity were
horizontally placed "a � 89>#\ buoyancy would only tend
to damp the perturbation owing to the stable mean tem!
perature _eld[ But\ in inclined cavities\ the upslope buoy!
ancy force can promote motion with w ³ 9 if R cos au? is
large enough[ Same reasoning applies where u × 9 and
w × 9[ This mechanism favours larger critical wave num!

Fig[ 7[ Contours of stream!function and temperature of critical
stationary perturbations for "a# Pr � 9[94 and a � 29 and
"b# Pr � 09[9 and a � 69[
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ber especially at small inclinations "note the increase of
kc\st for Pr × 9[94 and a ¾ 69> in Fig[ 3b#[ If this mech!
anism is not present "as in the case a � 89># the e}ect of
the thermal _eld for Pr × 9[94 is to elongate the shear
rolls owing to the rise of thermal stability along x direc!
tion[ Isotherms and streamlines of a stationary critical
perturbation for Pr � 09 in an inclined cavity are shown
in Fig[ 7b[

Finally\ note that as Pr : �\ the mean shear and the
temperature strati_cation needed to put a very viscous
~uid into multicellular ~ow becomes larger and larger\
so\ Rc\st cos a tends asymptotically to R� "see Fig[ 4#[

5[1[ Oscillatory thermal instability

The energy balance for the oscillatory disturbances
displayed in Fig[ 6b\ reveals that long!wave oscillatory
disturbances are mainly driven by the buoyancy force
along z direction[

In vertical cavities\ the onset of thermal convection
takes place at R � R� and the critical mode has a van!
ishing wave number[ In the inclined cavity\ the values of
the critical Rayleigh number\ Rc\os are close to R�:cos a

for any Pr as a consequence of the thermal origin of the
instability but\ on the other hand\ secondary ~ow in the
x direction is favoured by two di}erent ways[ First\ rolls
with k × 9 take energy out from the mean velocity _eld
"see the energy balance in Fig[ 6b#[ Second\ owing to the
existence of a mean temperature gradient\ particles with
cross!stream motions move to new thermal surroundings
and experience a buoyancy force in z direction by a mech!
anism similar to that explained for the shear instability[

The deviations of the critical wave number and Ray!
leigh number with respect to the corresponding values
for the pure conductive state at a � 9> "kc � 9\ Rc � R�#
may be understood in terms of these two facts[ As Pr :
� or as a : 9>\ the contribution of the mean ~ow "m#
vanishes and the critical modes tend to gain all their
energy from the upslope buoyancy so\ kc\os : 9 and Rc\os

cos a : R�[ On the other hand\ both kc\os and tx present
a maximum at Pr � 0 "see Figs[ 5b and 6b# indicating
that the rolls size reduction is also favoured by the coup!
ling of the cross!stream motions and the upslope buoy!
ancy force[

Concerning the dependence on the inclination\ for a

slightly above zero the damping e}ect of the cross!stream
buoyancy is negligible\ and the sharp increase of kc\os with
a "see Fig[ 5a# indicates the e.ciency of the mean ~ow
advection in generating _nite rolls[ For instance\ for
Pr � 9[6 and a � 0> the size of the thermal rolls are
reduced to 7[5 times the width of the cavity[ The value of
kc\os increases with a until a ¼ 19> and decreases for larger
inclination owing to the rise in stabilizing cross!stream
buoyancy[

The oscillatory disturbance is a standing wave com!
posed of the superposition of a couple of travelling modes

carried away by the mean ~ow with equal and opposite
sign phase velocities 2li:k[ Figure 8 shows contours of
the stream function and isotherms of the superposition
of the critical travelling waves for Pr � 9[6 and a � 29>[
The critical phase velocity c 0 li:k\ increases with the
inclination angle "see Table 0# according to larger values
of the mean ~ow velocity[ For a : 9> the mean ~ow
vanishes and the associated frequency "li# tends to zero[
Another characteristic of this oscillatory instability is that
the ratio between c and the maximum mean ~ow velocity\
wo max is independent of the inclination "it varies in less
than 0) with a# and only depends on the di}usion
properties of the ~uid\ i[e[ on Pr[ The phase velocity is
lower than wo max and for large Pr\ the ratio c:wo max tends
to unity "e[g[ 9[66\ 9[80 respectively for Pr � 9[6 and
Pr � 09#[

5[2[ Crossover of instabilities

The type of instability that breaks down the unicellular
motion is determined by the lowest values of both Rc\os

and Rc\st[ For in_nite cavities\ it depends on the Prandtl
number and on the inclination angle[ The stability bound!
ary in the a−Pr space is shown in Fig[ 09[ For Prandtl
number below to 9[1 stationary shear modes are critical
at all angles of inclination while for Pr higher than

Fig[ 8[ Contours of stream function and temperature of critical
oscillatory perturbations for Pr � 9[6 and a � 29[

Fig[ 09[ Stability regions in the PrÐa space[
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approximately 9[6\ oscillatory thermal modes are critical[
In the range 9[1 ³ Pr ³ 9[6\ there is an exchange of insta!
bility mechanisms at certain angle\ a�[ This angle rises
steeply near Pr � 9[4 revealing a well de_ned value of the
Prandtl number for the onset of stationary or oscillatory
disturbances[

6[ Numerical solution of the ~ow in closed geometries

A Chebyshev!collocation pseudospectral method has
been used to solve the unsteady two!dimensional NavierÐ
Stokes and heat equations in vorticity!stream function
variables for the closed geometry of Fig[ 0[ The spatial
approximation in both directions is based on the expan!
sion of the ~ow variables in truncated series of Chebyshev
polynomials[ The time discretization is obtained through
an AdamÐBashforth\ second order Backward Euler
scheme ð19Ł[ This is a semi!implicit _nite di}erence
scheme^ i[e[\ the di}usive terms are treated implicitly
while the non!linear terms are treated explicitly[ For each
cycle\ the equation for the temperature at the next time
step consists in a Helmholtz!type equation which is solved
by means of a double diagonalization procedure for the
algebraic system coming from the Chebyshev collocation
method ð19Ł[ The corresponding equations for the stream
function and vorticity consist of a Stokes!type problem
which is solved by using the In~uence Matrix technique
ð19Ł[ This technique avoids the inconvenience of having
two boundary conditions for the stream function and
none for the vorticity and leads to the solution of several
Helmholtz equations with Dirichlet boundary
conditions[

According with the results of the linear stability analy!
sis\ the calculations have been carried out for several sets
of the parameters "Pr\ a\ o# selected to study the onset\
evolution and interaction of the stationary oscillatory
secondary ~ow[

In each case\ the Rayleigh number was gradually
increased to approximately 29) above the critical value[
The initial condition was the converged solution for the
immediately lower R and the computing time was about
t� ¹ 09×"1h#1:n[ In the unicellular regime the dimen!
sional time step was typically Dt� ¹ 9[0×"1h#1:n\ near
the onset of multicellular motion it had to be decreased
to Dt� ¹ 09−29×"1h#1:n[ Some details of the spatial accu!
racy are given in Table 1\ where ~ow variables as the
maximum absolute value of the stream function
"=C=MAX#\ the maximum velocity along z and x direction
"wMAX\ uMAX# and the angular frequency of oscillations
"v# are shown for two di}erent multicellular ~ow solu!
tions[ By using a typical mesh of 22×70 collocation
points in the unicellular regime\ the ~ow variables were
obtained with accuracies of about 9[0)[ For R above the
onset of multicellular motion\ the number of collocation
points was increased to ensure accuracies of about 0)[

To study the oscillatory long!wave thermal rolls\ cal!
culations with Pr � 9[6\ a � "19\ 49#\ o � 0:49 were car!
ried out for increasing R[ In both cases the onset of
oscillatory multicellular ~ow occurred abruptly at a cer!
tain Rayleigh number[ The transition was found at
39 ³ R ¾ 34 and 69³ R ¾ 64 respectively for a � 19
and a � 49\ whereas the predicted values of the critical
Rayleigh number expressed in terms of the overall tem!
perature gradient are Rc\os:h � 33[5 and Rc\os:h � 61[4[
The wave numbers obtained from the numerical solutions
of the ~ow at the onset of the instability "k � 9[24 and
k � 9[29 respectively for a � 19 and a � 49# are also very
close "less than 9[2) of deviation# to those predicted by
the stability analysis[ In the studied range of R "R ¾ 89\
R ¾ 59 respectively for a � 49\ 19# the ~ow has an oscil!
latory behaviour[ The numerically calculated angular fre!
quencies\ near the onset of the instability "4[35 for a � 19
and 6[12 for a � 49# are about 19) greater than the
linear stability predictions "respectively 3[14\ 5[93#[ In the
studied range of R\ the fundamental frequency increases
almost linearly with R\ according to the growth of the
mean ~ow advection[ As an example\ for a � 49\ the
angular frequency varies from 6[12 at R � 64 to 7[35 at
R � 89[

Calculations with Pr � 9[6\ a � "19\ 49# and a smaller
o � 0:09 cavity were performed to investigate the con!
_nement e}ect[ For this set of parameters the critical
oscillatory rolls can not develop as their wave number
"kc\os ¹ 9[23# is smaller than the wave number cuto}
imposed by the cavity "1po � 9[517#[ Instead\ for both
a � 19 and a � 49 a gradual transition to stationary
multicellular ~ow was observed[ This fact is illustrated
in Fig[ 00 where the ~ow parameter dwmax 0
Max""0:wmax#"1wmax:1z## is plotted vs R[ Note that in the
case of o � 0:49\ dwmax � 9 for R ³ Rc:h so the ~ow at
the core is purely parallel below the critical Rayleigh
number\ but for o � 0:09\ a weak secondary ~ow exists
in the core for R ³ Rc:h[ The origin of this secondary
~ow resides on the recirculation eddies developed near
the turning regions at the end of the cavity and convected
towards the core ð07Ł[ For Rayleigh number above the
critical one the stationary rolls becomes more and more
intense at the core[ These results indicate that the ~uid
undergoes an imperfect bifurcation to multicellular ~ow
induced by the e}ect of the closing walls[ In di}erentially
heated cavities\ this type of transition to stationary
multicellular ~ow was _rst reported by Hart ð07Ł for
a � 89\ Pr � 9[0 and o � 0:6[ In horizontal cavities it
has been shown ð11Ł that this transition occurs only if
Pr ¾ 9[01[ Our results show that in inclined cavities the
imperfect bifurcation takes place at larger Prandtl
number\ Pr ¹ 0[ The explanation of this fact is that\ for
a ³ 89> the recirculation eddies are also ampli_ed by the
buoyancy force along z direction acting upon the large
cross!stream temperature gradient near the turning
regions[ The wavelength and wave number obtained for
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Table 1
Dependence of several ~ow parameters on the grid mesh[ In all cases a � 19

o R N×M =Cmax= wmax umax w

9[09 029 20×60 9[070681×091 9[187594×092 9[026296×092 9
9[09 029 22×70 9[071904×091 9[290972×092 9[027824×092 9
9[09 029 22×80 9[070649×091 9[299726×092 9[028252×092 9
9[91 34 20×000 9[048315×091 9[013385×093 9[451024×092 4[42
9[91 34 20×010 9[042449×091 9[008331×093 9[479350×092 4[34
9[91 34 24×020 9[042655×091 9[008161×093 9[470832×092 4[34

Fig[ 00[ dwmax vs the external Rayleigh number "R#[ Dashed
lines indicate the values of the corresponding critical Rayleigh
number predicted by the linear stability analysis\ scaled with the
external temperature gradient\ Rc:h[

o � 0:09\ together with the critical values predicted by
the stability analysis are shown in Table 2[ Results for
several values of R are given to take into account the
gradual transition to multicellular motion[ For R ¹ Rc:h\

Table 2
Comparison between numerical and critical wave numbers for
Pr � 9[6 and o � 9[0^ l is the wavelength

Numerical
Theoretical

R a l k kc

019 19 3[229[1 0[3529[95 0[41
029 19 3[129[2 0[429[0 \\
069 49 3[029[1 0[429[0 0[36
079 49 2[829[1 0[529[0 \\
089 49 2[629[1 0[629[0 \\

the predicted critical wave number agree in less than 4)
but\ for increasing R\ the stationary rolls become shorter
as the recirculation zones near the end regions spread
towards the center part of the cavity and reduce the
region were the stationary instability develops[

At Pr � 9[94\ a � 09 and o � 0:29 the unicellular ~ow
is expected to become multicellular via a transition to
stationary shear rolls[ According to the linear stability
predictions\ the ~ow breaks down at Rc\st � 13[64 with
kc\st � 0[23[ In the numerical calculations\ a set of 00
stationary shear rolls with wave number k � 0[20 are
observed along the cavity at 14 ³ R¾ 15[ The intensity
of the stationary rolls increases with the Rayleigh number
until R � 29[ At this value of R\ the stationary pattern
evolves to an oscillatory solution with an angular fre!
quency of v � 4[17[ This frequency may be compared
with that obtained by Pulicani et al[ ð10Ł who found a
transition to oscillatory multicellular ~ow in a cavity with
o � 0:3\ a � 89 and Pr � 9[904 at a "larger# Grashof
number "Gr � R:Pr � 1951# and an angular frequency
v � 12[4[ The second transition to oscillatory ~ow in low
Prandtl ~uids is a consequence of mean ~ow advection
ð10Ł[ Both frequencies scaled with a time unit charac!
teristic of the mean ~ow advection\ Gr−0h1:n\ have\ in
fact\ the same order of magnitude "v � 0[0×09−1 and
9[8×09−1 respectively for Ref[ ð10Ł and our case#[

For Pr � 9[2 and a � 01 the critical Rayleigh number
for stationary and oscillatory transversal instabilities
coincides\ Rc � 29[5[ Calculations with this set of par!
ameters and o � 0:59 were carried out to investigate a
transition to a multicellular regime with two types of
interacting instabilities[ The onset of multicellular motion
was found at 24³ R ¾ 27 and the corresponding mean
local Rayleigh at the core was 29[3 ³ hR ¾ 20[7 which is
very close to the linear stability prediction[ The spatial
structure of the ~ow consisted in fact in the superposition
of the two expected types of rolls[ A _ner mesh of 24×070
collocation points had to be used to correctly solve the
~ow details[ The power spectrum of the stream function
along z direction presents two peaks with wave number
k � 9[11 and k � 0[40 which are in good agreement with
the predicted critical wave number for oscillatory and
stationary instabilities\ k � 9[13 and k � 0[42 respect!



R[ Del`ado!Buscalioni\ E[ Crespo del Arco : Int[ J[ Heat Mass Transfer 31 "0888# 1700Ð1711 1710

ively[ The shear rolls are convected along the cavity\
travelling inside the long oscillatory rolls[ The ~ow is
oscillatory at R � 27[ Its fundamental "angular#
frequency\ 4[06\ is close to the frequency of the thermal
oscillatory instability\ 3[71\ obtained in the linear stability
analysis[

7[ Concluding remarks

The e}ect of inclined boundaries on the basic and
secondary ~ow in axially heated long _nite cavities is
the main subject of this paper[ The coupling between
hydrodynamic and convective mechanisms of instability
causes particular properties of the instabilities which arise
in the ~ow[ Also\ in this simple con_guration the insta!
bilities and their interaction can be easily studied by
choosing appropriate values of the aspect ratio and incli!
nation angle[

Concerning the basic unicellular ~ow\ we have found
that the value of local Rayleigh number at the core region
of the cavity is limited by an upper boundary\ R�:cos a[

We have considered the stability of the base ~ow to
transversal perturbations[ The results should be valid for
cavities with small depth!to!width aspect ratio\ where
the three dimensional secondary ~ow is expected to be
negligible "see Henkes ð02Ł in the case of horizontal cavi!
ties# and two!dimensional perturbations are expected to
be critical[ A subsequent study will consider longitudinal
"three!dimensional# instabilities in a closed geometry[

In two!dimensional inclined cavities\ the breakdown
of the unicellular ~ow may be due to shear stationary or
thermal oscillatory rolls[ The stationary rolls are nearly
square and appear for Prandtl below 9[1 while long!wave
oscillatory cells of approximately ten times the width of
the cavity\ appear _rst for Pr × 9[6[ For 9[1³ Pr ³ 9[6
the critical instability depends on the inclination being
oscillatory for low enough tilts[ The energy balance of
critical perturbations shows that\ though stationary and
oscillatory perturbations are mainly driven by the mean
shear and the upslope buoyancy\ for moderate "¹0#
Prandtl number and non!horizontal tilts the onset of the
secondary motion is due to the interplay of both the
velocity and thermal _elds[

The numerical solution of the ~ow in the closed
geometry has furnished information about the e}ect of
the aspect ratio on the onset of secondary ~ow[ We have
found imperfect bifurcations to stationary multicellular
~ow in an inclined o � 0:09 cavity\ occurring for Prandtl
number at least one order of magnitude greater than in
the horizontal con_guration[ Otherwise\ in longer cavi!
ties\ the oscillatory and stationary rolls developed sud!
denly at Rayleigh number and with wave number quite
close to those predicted by the stability analysis[

Acknowledgements

We are indebted to Drs P[ Bontoux\ J[ Ouazzani and
B[ Brenier for their assistance in the numerical part of
the work[ We also acknowledge useful discussions with
them and Drs M[ A[ Rubio\ and I[ Zun½iga[ R[ Delgado!
Buscalioni has been supported by a fellowship from
Spanish M[E[C[ This work has been supported by
DGICYT Projects PB86!9966\ PB85!9037 and PB83!271
and A[ I[ Hispano!Francesa 187B[ Computations of Sec!
tion 6 have been carried out on Cray YMP1E and CRAY
C87 computers with support from IMT in Chateau!Gom!
bert\ Marseille[

References

ð0Ł P[G[ Daniels\ P[ Wang\ On the evolution of thermally
driven shallow cavity ~ows\ J[ Fluid Mech[ 148 "0883# 096[

ð1Ł B[L[ Markham\ F[ Rosenberger\ Di}usiveÐconvective
vapor transport across horizontal and inclined rectangular
enclosures\ J[ Crystal Growth 56 "0873# 130[

ð2Ł P[ Bontoux\ C[ Smutek\ A[ Randriamampianina\ B[ Roux\
G[P[ Extremet\ A[C[ Hurford\ F[ Rosenberger\ De Vahl
Davis\ Numerical solutions and experimental results for
three!dimensional buoyancy driven ~ows in tilted cylinders\
in] Adv[ Space Res[\ Pergamon\ 0875\ p[ 044[

ð3Ł A[W[ Woods\ S[J[ Lintz\ Natural convection and dispersion
in a tilted fracture\ J[ Fluid Mech[ 130 "0881# 48[

ð4Ł P[ Cessi\ W[R[ Young\ Fixed!~ux convection in a tilted
slot\ J[ Fluid Mech[ 126 "0881# 46[

ð5Ł G[Z[ Gershuni\ E[M[ Zhukhovitskii\ Convective stability
of incompressible ~uids\ Israel Program for Scienti_c
Translations\ Jerusalem\ 0865[

ð6Ł D[E[ Cormack\ L[G[ Leal\ J[ Imberger\ Natural convection
in a shallow cavity with di}erentially heated end walls\ Part
0[ Asymptotic Theory\ J[ Fluid Mech[ 54 "0863# 198[

ð7Ł J[ Imberger\ Natural convection in a shallow cavity with
di}erentially heated end walls\ Part 2[ Experimental results\
J[ Fluid Mech[ 54 "0863# 136[

ð8Ł J[E[ Hart\ A note on the stability of low!Prandtl!number
Hadley circulations\ J[ Fluid Mech[ 021 "0872# 160[

ð09Ł P[ Laure\ B[ Roux\ Synthe�se des re�sultats obtenus par
l|e�tude de stabilite� des mouvements de convection dans une
cavite� horizontale de grande extension[\ C[R[ Acad[ Sci[
Paris 294 Se�rie II\ "0876# 0026[

ð00Ł H[P[ Kuo\ S[A[ Korpela\ Stability and _nite amplitude
natural convection in a shallow cavity with insulated top
and bottom and heated from a side\ Phys[ Fluids 20 "0#
"0877# 22[

ð01Ł R[J[A[ Janssen\ R[A[W[M[ Henkes\ In~uence of Prandtl
number on instability mechanisms and transition in a
di}erentially heated square cavity\ J[ Fluid[ Mech[ 189
"0884# 208[

ð02Ł R[J[A[ Janssen\ R[A[W[M[ Henkes\ Instabilities in three!
dimensional di}erentially heated cavities with adiabatic
horizontal walls\ Phys[ Fluids 7 "0885# 51[

ð03Ł T[ Adachi\ J[ Mizushima\ Stability of thermal convection



R[ Del`ado!Buscalioni\ E[ Crespo del Arco : Int[ J[ Heat Mass Transfer 31 "0888# 1700Ð17111711

in a tilted square cavity\ J[ Phys[ Soc[ Jap[ 54 "0885# 5\
0575[

ð04Ł E[ Crespo del Arco\ P[ Bontoux\ Numerical solution and
analysis of asymmetric convection in a vertical cylinder]
an e}ect of Prandtl number\ Phys[ Fluids A0 "0878#
0237[

ð05Ł J[E[ Hart\ Stability of the ~ow in a di}erentially heated
inclined box\ J[ Fluid Mech[ 36 "0860# 436[

ð06Ł A[ Bejan\ C[L[ Tien\ Laminar natural convection heat
transfer in a horizontal cavity with di}erent end tempera!
tures\ J[ Heat Transfer 099 "0867# 530[

ð07Ł J[E[ Hart\ Low Prandtl number convection between di}er!
entially heated end walls\ Int[ J[ Heat Mass Transfer 15
"0872# 6[

ð08Ł B[ Brenier\ B[ Roux\ P[ Bontoux\ Comparaison des me�tho!

des TauÐChebyshev et Galerkin dans l| e�tude de stabilite�
des mouvements de convection naturelle[ Proble�me des
valeurs propres parasites\ J[ Mecanique The�orique et
Applique�e 4 "0# "0875# 84[

ð19Ł J[M[ Vanel\ R[ Peyret\ P[ Bontoux\ A pseudospectral solu!
tion of vorticity!stream function equations using the in~u!
ence matrix technique\ in] K[W[ Morton\ M[J[ Baines\
"Eds#\ Numerical Methods for Fluid Dynamics II\ Clar!
endom Press\ Oxford\ 0875\ pp[ 352Ð364[

ð10Ł J[P[ Pulicani\ E[ Crespo del Arco\ A[ Randriamampianina\
P[ Bontoux\ Spectral simulation of oscillatory convection
at low Prandlt number\ Int[ J[ Number\ Meth[ Fluids 09
"0889# 370Ð406[

ð11Ł E[ Drummond\ S[A[ Korpela[ Natural convection in a shal!
low cavity\ J[ Fluid Mech[ 071 "0876# 432[


